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Abstract. We study localization in polymer chains modeled by the nonlinear discrete Schrödinger equa-
tion (DNLS) with next-nearest-neighbor (n-n-n) interaction extending beyond the usual nearest-neighbor
exchange approximation. Modulational instability of plane carrier waves is discussed and it is shown that
localization gets amplified under the influence of an enhanced interaction radius. Furthermore, we con-
struct exact localized solitonlike solutions of the n-n-n interaction DNLS. To this end the stationary lattice
system is cast into a nonlinear map. The homoclinic orbits of unstable equilibria of this map are attributed
to standing solitonlike solutions of the lattice system. We note that in comparison with the standard
next-neighbor interaction DNLS which bears only one type of static soliton-like states (either staggering
or unstaggering) the one with n-n-n interaction radius can support unstaggering as well as staggering
stationary localized states with frequencies lying above respectively below the linear band. Generally, the
stronger the n-n-n interaction on the DNLS lattice the smaller are the maximal amplitudes of the standing
solitonlike solutions and the less rapid are their exponential decays.

PACS. 63.20.Pw Localized modes – 63.20.Ry Anharmonic lattice modes – 63.20.Kr Phonon-electron and
phonon-phonon interactions

1 The nonlinear discrete Schrödinger
equation with long range interaction

The nonlinear Schrödinger equation (DNLS) has been suc-
cessfully applied over the last years in modeling various
physical systems. It found application in condensed mat-
ter systems, nonlinear optics, exciton motion in molecu-
lar crystals, electrical networks and for the dynamics of
molecular vibrations [1]. Basic to this short range interac-
tion DNLS (hereafter referred to as the standard DNLS)
is a tight-binding system taking into account only the di-
rect interaction between adjacent lattice sites. However,
in some physical contexts the range of the interaction ex-
ceeds the radius of the nearest neighborhood so that each
lattice site interacts with sites being more than one lat-
tice unit apart from it too. To emphasize the physical
importance of long range interaction we recall that the
exciton transfer in molecular crystals and the transport of
vibronic energy in biomolecules are mediated by dipole-
dipole interaction with a typical long range power law de-
pendence on the distance between the molecular subunits.
In DNA molecules charged groups with Coulomb interac-
tion are responsible for a long range interaction between
them [2–6]. For excitons and photons in semiconductors
and molecular aggregates the polariton effect leads a to
long range interaction radius [2,3]. Finally, as a result of
the stable secondary structure of α-helix and β-sheet re-
gions of proteins [4] protein electron transfer may proceed
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along one-dimensional pathways for which the exchange
interaction includes besides the nearest neighbors also the
next-nearest neighbors of peptide groups along a polypep-
tide chain.

There are only a few papers concerning the effects of
long range interaction in nonlinear lattice dynamics [5–13]
(and references therein).

The standard DNLS represents a Hamiltonian non-
linear lattice system for which the general existence of
breather solutions, that is spatially localized but time-
oscillating states, has been proven [14,15]. Such intrin-
sically localized states arise as the result of the interplay
between lattice discreteness, nonlinearity and dispersive
interactions and have attracted much interest over the
past years (for a review see [16]). Specifically, for the stan-
dard DNLS the existence and stability of intrinsically lo-
calized mode have been considered in [17–22]. The scope
of this paper is to investigate the impact of n-n-n interac-
tion on the creation of localized solutions in the context
of the DNLS.

We consider the nonlinear Schrödinger equation with
long range interaction given by

i
dcn(t)

dt
+ γ|cn(t)|2 cn(t)

+
N∑
m=1

Vm(cn+m(t) + cn−m(t)) = 0. (1)

The real parameter γ ≥ 0 determines the nonlinearity
strength and the Vm’s regulate the degree of the coupling
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between the lattice oscillators at sites n and n ±m. The
long range interaction Vm≥1 serves as the extension of the
standard DNLS lattice for which only nearest neighbor
interaction were taken into account. In the limit of Vm = 0
for |m| ≥ 2, equation (1) reduces to the standard DNLS
system of short range interaction.

The paper is organized as follows: In Section 2 we dis-
cuss the stability of carrier plane wave solutions of the
n-n-n interaction DNLS. The parameter space is searched
for the occurrence of modulational instability. For n-n-n
interaction radius the formation of localized pulses is
demonstrated. The second part of the paper deals with
the solution behavior of the stationary n-n-n interaction
DNLS. The stationary system is interpreted as a nonlin-
ear map in a four-dimensional phase space. The stability
of the equilibrium point of this map located at the origin
is examined. In the case of an unstable hyperbolic point it
is shown that the construction of exact solitonlike lattice
solutions can be achieved. These standing localized solu-
tions are supported by homoclinic map orbits. Finally in
Section 4 we give a brief summary.

2 Modulational instability

Nonlinear wave equations may exhibit modulational in-
stability leading to a self induced modulation of an input
plane wave with the subsequent generation of localized
pulses. In this way energy localization in a homogeneous
nonlinear system is possible and is manifested in the for-
mation of envelope solitons [23–27]. Experimentally these
results are confirmed by the observation of localized modes
for example in electrical networks [28].

In the current section we explore the stability prop-
erties of equation (1) which possesses exact plane wave
solutions

cn(t) = c0 exp[i(qn− ωt)] ≡ c0 exp(iψn), (2)

where q is the wave number. The frequency ω satisfies the
nonlinear dispersion relation

ω = 2
N∑
n=1

Vn cos(nq) + γ c20. (3)

To examine the linear stability of the solution (2) we
use the ansatz cn(t) = (c0 + bn) exp(iΘn + iψn) with
the complex quantities bn being small in comparison to
c0. We derive the linear system for the dynamics of the
perturbation

c0ψ̇n = −2γc20 bn +
N∑
m=1

Vm [(bn+m + bn−m − 2bn) cos(mq)

−(ψn+m − ψn−m) sin(mq) c0] (4)

ḃn =
N∑
m=1

Vm [cos(mq)(ψn+m + ψn−m − 2ψm)c0

+ (bn+m − bn−m) sin(mq)] . (5)

Fig. 1. Regions of modulational instability in the q-Q-plane
indicated by the dark area(s). Parameters: γ = 1, c0 = 0.5 and
b = 0.01. (a) The standard DNLS with V1 = 0.2. (b) The n-n-n
DNLS with V1 = 0.2 and V2 = 0.1.

From the system (4) and (5) we deduce the dispersion
relation for the perturbational wave(
Ω + 2

N∑
m=1

Vm sin(mq) sin(mQ)

)2

= 4
N∑
m=1

Vm cos(mq)

× sin2

(
mQ

2

)[
4

N∑
m=1

Vm cos(mq) sin2

(
mQ

2

)
− 2γc20

]
,

(6)

where Ω and Q denote the corresponding frequency and
wave number. The dispersion relation (6) enables to de-
termine the parameter constellations (q,Q) for which a
carrier wave with wave number q becomes unstable. In
Figure 1 we show the regions of modulational instabil-
ity on the q-Q-parameter plane for different interaction
ranges.

The regions of modulational instability for the stan-
dard DNLS equation of V1 6= 0 and Vn≥2 = 0 for which a
given site m is coupled only to its left and right adjacent
neighboring sites m ± 1 is depicted as the dark area in
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Fig. 2. Localized pulses on the DNSL lattice due to modulational instability demonstrating the rising degree of localization
with extended interaction radius. (a) The standard DNLS: parameters as in Figure 1a and q = Q = 0.5. (b) The n-n-n DNLS:
parameters as in Figure 1b and q = Q = 0.5.

Figure 1a. Figure 1b illustrates the parameter regions of
modulational instability for n-n-n interaction with V1 6= 0,
V2 6= 0 and Vn≥3 = 0. In comparison with Figure 1a we
note that for the extended interaction range the area in the
q-Q-plane with q ≤ π/2 for which modulational instability
is possible shrinks. Especially, a large portion of the stripe
1 . q ≤ π/2 does no longer belong to the area of modu-
lational instability and only the impact of modulations of
large Q remains in this wave number range. Additionally
carrier waves with large wave numbers enter the region
of modulational instability. Consequently, modulational
instability is possible for high-frequency oscillations too.
Thus two types of nonlinear localized modes exist with fre-
quencies lying below (above) the linear band resulting in
out-of-phase (in-phase) oscillations of neighboring lattice
oscillators. (These localized modes have also been called
staggered (unstaggered) soliton-like states [26].) A similar

result was obtained in the case of a generalized deformable
DNLS with nearest-neighbor interaction [27].

In Figure 2 we illustrate the influence of the interaction
range on the formation of localized pulses in cause of mod-
ulational instability. The amplitude pattern |cn(t)|2 of the
standard DNLS is shown in Figure 2a. The modulated car-
rier wave is initiated as cn(0) = (c0 + b cos(Qn)) cos(qn)
with c0 = 0.5 and b = 0.01. We recognize three sepa-
rated localized pulses. Taking into account n-n-n inter-
action (Fig. 2b) leads to more pronounced degree of lo-
calization in the sense that not only the amplitudes of
the localized pulses become larger but also their widths
diminish. Similar results regarding modulational instabil-
ity behavior were obtained for long-ranging interaction
when the transfer matrix elements obey a distance de-
pendence according to a power law (arising in the case of
dipole-dipole interaction [6]). Obviously, with longer range
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interaction the system’s inherent length scale determined
by the interaction radius, extends. In order to ‘defeat’ the
resulting enhanced dispersion and to maintain localized
solutions the lattice system responses by adapting its lo-
calized pulses to larger amplitudes.

3 Stationary localized solutions

We study stationary solutions of the system (1) which are
obtained from the ansatz

cn(t) = φn eiωt (7)

with φn ∈ R and a rotation frequency ω. Substituting (7)
into (1) we obtain

ωφn = γφ3
n +

N∑
m=1

Vm(φn+m + φn−m). (8)

Setting x
(N−k)
n = φn+k with −N ≤ k ≤ N − 1 we ex-

press this difference system as a 2N -dimensional mapM :
R2N −→ R2N determined by

x
(1)
n+1 =

1
VN

[
ωx(N)

n − γ(x(N)
n )3

]
− 1
VN

N∑
m=1

Vm(x(N+m)
n + x(N−m)

n )− x(2N)
n (9)

x
(k+1)
n+1 = x(k)

n , 1 ≤ k ≤ 2N − 1, (10)

with the condition VN 6= 0. This map M is volume pre-
serving because the Jacobian matrix DM fulfills the con-
dition detDM = 1. Furthermore the map can be writ-
ten as the product of two involutions M = M0M1 with
M2

1,2 = Id, establishing reversibility of M, i.e. M−1 =
M1M0. The map M0 is given by

x̄(k) = x(2N−1+k), 1 ≤ k ≤ 2N, (11)

and M1 reads as

x̄(k) = x(2N−k), 1 ≤ k ≤ 2N − 1

x̄(2N) =
1
VN

[
ωx(N) − γ(x(N))3

−
N∑
m=1

Vm
(
x(N+m) + x(N−m)

)]
− x(2N).

We focus interest on the excitation of localized states on
the lattice. Lead by our experiences from the planar case
(N = 1) we note that such localized stationary solutions
correspond to map orbits lying on the stable and unstable
manifolds of hyperbolic equilibria [22]. If, in particular, the
map origin represents an unstable hyperbolic equilibrium
point then a bright solitonlike solution provided by the
corresponding homoclinic map orbit is excitable. As it is
apparent from the system (9, 10) the origin represents an

equilibrium point of the mapM. Its spectral stability can
determined by the solution properties of the characteristic
polynomial det(DM−λI) = 0 associated with the tangent
map at the origin which reads as

λ2N − ω

VN
λN +

1
VN

N−1∑
m=1

Vm(λN−m + λN+m) + 1 = 0

and VN 6= 0, N ≥ 2. (12)

Since the characteristic polynomial is reflexive, it follows
that complex eigenvalues occur generally in 2N -tuples
(λk, λ−1

k , λ∗k, λ
∗−1
k ) with 1 ≤ k ≤ N . If all |λk| = 1 then

they occur in complex conjugate pairs while real eigenval-
ues come in pairs (λk, λ−1

k ). In the latter case the equilib-
rium point is unstable having N -dimensional stable and
unstable manifolds in the 2N -dimensional phase space. To
visualize these manifolds we use two-dimensional projec-
tions on the various x(i)−x(j)-hyper planes with i 6= j. Due
to the reversibility property φn ←→ φn−1 it follows that
the map obeys the reflection symmetry x(k) ←→ x(k+1)

for 1 ≤ k ≤ 2N − 1. Exploiting this symmetry it can be
readily shown that for a proper projection of the invariant
manifolds it suffices to consider only the plane of neigh-
boring amplitudes x(k) − x(k+1) for one given k.

In order to illustrate the excitation of localized solu-
tions based on the homoclinic orbit in a phase space of
dimension larger than two, we consider the case N = 2
yielding a four-dimensional map. In principle this analysis
can be extended to any dimension. We only have to solve
the characteristic equation (12). However, the computa-
tions become rather lengthy and tedious with increasing
dimension so that we restrict ourselves here to N = 2 to
compare with the results of stationary analysis in the pla-
nar case [21]. The roots of the characteristic polynomial
assigned to the equilibrium of the map origin are com-
puted as

λ =
1
2

(
ρ±

√
ρ2 − 4

)
, (13)

with

ρ =
1
2

−V1

V2
±

√(
V1

V2

)2

+
4ω
V2

+ 8

 . (14)

If the condition |ρ| > 2 is fulfilled then there exist real
eigenvalues λ and the origin (0, 0, 0, 0) represents an un-
stable hyperbolic point. From equation (14) we infer that
for ρ > 2 it must hold that

ω > 2(V1 + V2), (15)

while for ρ < −2 we get the condition

ω < −2(V1 + V2). (16)

From the dispersion relation of the linear lattice equation
(γ = 0) we derive that the linear band is constrained by
the inequality

−2(V1 + V2) ≤ ω ≤ 2(V1 + V2). (17)
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Thus the conditions (15) respectively (16) tell us actu-
ally that in order to get localized lattice solutions (linked
with a hyperbolic orbit of the unstable fixed point of the
map origin) the frequency ω has to lie above respectively
below the linear band. Therefore for positive (negative)
frequencies ω > 0 (ω < 0) the localized solutions appear
as unstaggered (staggered) solitons [26]. This has to be
distinguished from the localization properties of the stan-
dard DNLS for positive nonlinearity strength γ > 0 as
well as positive coupling constant V1 > 0 for which lo-
calization is possible only if the frequency ω lies above
the linear band [21], that is ω > 2V1. In this case the
soliton-like states are of unstaggering nature [26]. Interest-
ingly, taking into account the n-n-n interaction besides the
positive-frequency unstaggered localized states also stag-
gered soliton-like states whose amplitudes oscillate with
negative frequency occur. This result is in accordance with
the findings of the modulational instability analysis (see
Fig. 1b).

To depict the homoclinic tangle of the invariant man-
ifolds of the hyperbolic point we approximate the sta-
ble, respectively, the unstable, manifold in the vicinity
of the hyperbolic point by the linear subspaces (straight
lines in the direction of the eigenvectors) of the tangent
map. After iteration of a few thousand points on them
several times we obtain the homoclinic tangle. In Fig-
ure 3 we plot the projections of the four-dimensional sta-
ble and unstable manifold of the hyperbolic equilibrium
on the x(1)−x(2)-plane for the parameters γ = 1, V1 = 0.2
and V2 = 0.01. The manifolds extending along the lin-
ear eigenspaces belonging to the positive eigenvalue pair
(λ1, λ

−1
1 ) ((λ2, λ

−1
2 )) obtained for ω = 0.9 (ω = −0.9)

are drawn in Figure 3a (3b). One infers that there exist
transversal intersections of the stable and unstable mani-
folds at isolated points forming homoclinic orbits

{
φhom
n

}
.

Apparently, the windings as well as the location of the
first intersection points of the manifolds corresponding to
the negative eigenvalues (λ2, λ

−1
2 ) expand much more to-

wards larger |x|, |y| as in the case of the positive (λ1, λ
−1
1 ).

However, with regard to the amplitude pattern |cn(t)|2 it
makes no difference whether the solitons are of staggering
or unstaggering type. Hence, the staggered solitonic state
possesses a much larger peak height than the unstaggered
one.

How the homoclinic connections can be exploited to
construct standing solitonlike solutions of lattice chains
has been shown e.g. in [21]. To this end we use the fact that
the homoclinic points approach the origin asymptotically
along the stable (unstable) manifold for n → ∞ (−∞),
respectively. Therefore, each homoclinic orbit

{
φhom
n

}
is

attributed to a localized state pinned by the lattice. Fig-
ure 4 shows the profile of stationary solitonlike excitations
|cn|2 of the DNLS lattice with different V2. We conclude
that the DNLS lattice of n-n-n interaction radius bears
stationary localized states of amplitudes smaller than the
ones for the standard DNLS solitons and with increasing
transfer matrix element V2 the soliton peak height reduces
further. The positive real eigenvalues λ1 diminish mono-
tonically with increasing V2 and obey further the inequal-

Fig. 3. Two-dimensional projections of the four-dimensional
homoclinic tangle of the hyperbolic point (0, 0, 0, 0) on the
x(1)−x(2)-plane. The parameters are γ = 1, V1 = 0.2 and
V2 = 0.01. (a) The first windings of the manifolds correspond-
ing to the pair of positive eigenvalues (λ1, λ

−1
1 ) occurring for

positive frequency ω = 0.9. (b) As in (a) for the pair of negative
eigenvalues (λ2, λ

−1
2 ) with ω = −0.9.

Fig. 4. The amplitude profile of the stationary soliton-like
states of the n-n-n DNLS lattice of equation (1) with N = 2.
The amplitudes of the stationary solitonlike solutions are
gained from the homoclinic map orbits. Parameters as in Fig-
ure 3a except for the different V2 as indicated.
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ity λ1 ≤ λ̃, where λ̃ is the maximal eigenvalue related to
the unstable zero equilibrium point of the planar map of
N = 1. Therefore we infer that the larger the relative in-
teraction strength V2/V1 the less rapid is the decay of the
soliton tails due to |cn| ∼ |λ||n| which is clearly seen in
Figure 4.

The linear stability of the localized solutions is proven
in a standard way with the help of the Floquet theory [29].
To investigate the linear stability of a time-periodic local-
ized state c

(0)
n (t) = φhom

n exp(iωt) we make the ansatz
cn(t) = [φn + δcn(t)] exp(iωt) including a small perturba-
tion δcn(t). Linearizing around cn = φn gives the linear
system of tangent equations for δcn(t)

i δċn = (ω − 2γφ2
n)δcn − γφ2

nδc
∗
n

−V1(δcn+1 + δcn−1)− V2 (δcn+2 + δcn−2). (18)

Decomposing into real and imaginary parts, δcn = an+ibn
we obtain eventually

ȧn =
[
ω − γφ2

n

]
bn − V1 (bn+1 + bn−1)

− V2 (bn+2 + bn−2), (19)

ḃn = −
[
ω + 3γφ2

n

]
an + V1 (an+1 + an−1)

+ V2 (an+2 + an−2). (20)

Integrating the tangent equations (19) and (20) over one
period T = 2π/ω yields a linear map(

an(T )
bn(T )

)
= F

(
an(0)
bn(0)

)
, (21)

where F is the Floquet matrix. Linear stability of the so-
lution c (0)

n (t) requires that all eigenvalues of the matrix F
are situated on the unit circle; otherwise the solution will
be linearly unstable. We have proven numerically that the
Floquet eigenvalues stay on the unit circle ensuring lin-
ear stability for the stationary localized solutions derived
from the homoclinic map orbit.

The decreasing height and increasing width of the
standing soliton-like states with enlarged V2 seems to be in
contradiction to the findings for the modulational insta-
bility analysis where the spontaneous formation of mul-
tiple localized pulses due to modulational instability of
plane wave solutions suggests an opposite tendency. How-
ever, these localized multi-pulse states do not represent
rigorous solutions of the nonintegrable DNLS lattice. They
are rather sensitive with respect to perturbations whereas
the standing soliton-like states derived from the station-
ary map constitute exact stable nonlinear localized eigen-
states of the DNLS lattice which are robust under linear
perturbations.

Finally, we remark that the map approach for the con-
struction of solitonlike solutions can also be invoked if the
range of the interaction is extended for N > 2. The only
difference lies in the consideration of a then higher dimen-
sional map making the existence of homoclinic orbits of
number 2N ≥ 2 possible.

4 Summary and conclusions

In this paper we considered a DNLS with n-n-n interac-
tion. We focused interest on the creation of intrinsically
localized modes. To this aim the first part of the paper
dealt with the formation of localized pulses due to modula-
tional instability. We identified regions in parameter space
for which the perturbations of plane wave solutions result
in localized solutions. The most striking feature is that
also high-frequency carrier waves exhibit modulational in-
stability for n-n-n interaction so that two types of local-
ized pulses occur for which neighboring lattice oscillators
perform in-phase respectively out-of-phase motion. Fur-
thermore it was found that the lower the interaction ratio
V1/V2 the stronger localized are the pulses, meaning that
not only their amplitudes grow but also their widths di-
minish. The spontaneous adaptation to intensified degree
of localization is the inherent mechanism of the lattice
system to maintain its localized structures and to protect
them against the increased dispersion.

The second part of the paper presented an approach
to construct exact localized states of the n-n-n interac-
tion DNLS utilizing a nonlinear map. The dimension of
this map is directly determined by the number of sites en-
compassed by the interaction radius. Parameter constel-
lations such that the map origin represents an unstable
hyperbolic equilibrium were identified. The corresponding
homoclinic orbits were used to excite stationary soliton-
like lattice states the stability of which was readily shown
by Floquet theory. Interestingly, the n-n-n DNLS supports
two types of standing solitons, namely staggered as well
as unstaggered ones. This variety of solutions does not
appear for the stationary system of the standard DNLS
for which the single stationary localized state is depend-
ing on the relative signs of the nonlinearity parameter
and the transfer matrix element either of staggering or
unstaggering nature. With view to the localization prop-
erties of polymer chains the n-n-n DNLS-model provides
bistable localized states to which excitation patterns of
different amplitude height and localization strength can
be targeted to. Moreover, one can take advantage of this
multistability property and construct a switching mecha-
nism accomplishing the controlled transition between the
two stationary localized states similar to the procedure
used in [9].

This work was supported by the Deutsche Forschungsgemein-
schaft via the Heisenberg-program (He 3049/1-1).
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